Archive for April, 2012

TCO Analysis of a Traditional Data Center vs. a Scalable, Containerized Data Center

Posted by on April 29, 2012  |  No Comments

White Paper 164

Power and cooling systems available now are more modular, more standardized, and more efficient than those installed in the majority of data centers today. Whether upgrading an existing data center or building a new one, data center managers will minimize both capital and operating expenses by specifying physical infrastructure with the following attributes:

  • Standardized, pre-assembled, and integrated components
  • Modular infrastructure than can scale as the load increases over time
  • Efficient power and cooling components
  • Cooling design with integrated economizer mode
  • Pre-programmed controls

White Paper 163,“Containerized Power and Cooling Modules for Data Centers”, describes how standardized, pre-assembled, and integrated modules (sometimes referred to as containers) save deployment time and upfront cost compared to the same electrical and mechanical infrastructure implemented in a “stick built” manner with custom engineering and considerable onsite work.

However, significant additional savings can be achieved. The modular nature of facility modules enables scaling and rightsizing to actual data center loads. This, in combination with current power and cooling distribution technologies, results in a TCO savings of nearly 30% over a traditional data center (27.2% capital cost and 31.6% operating cost).

“TCO Analysis of a Traditional Data Center vs. a Scalable, Containerized Data Center” Full White Paper (Download It Here)

Executive Summary:

Standardized, scalable, pre-assembled, and integrated data center facility power and cooling modules provide a “total cost of ownership” (TCO) savings of 30% compared to traditional, built-out data center power and cooling infrastructure. Avoiding overbuilt capacity and scaling the design over time contributes to a significant percentage of the overall savings. This white paper provides a quantitative TCO analysis of the two architectures, and illustrates the key drivers of both the capex and opex savings of the improved architecture.

Contents:

  • Cost Comparison
  • Assumptions

Conclusion:

Traditional designs almost always intentionally incorporate excess capacity upfront because subsequent expansion of power and cooling capacity is extremely difficult and costly in a production data center. This often has the effect of people being overly conservative in capacity planning which then results in higher upfront capital costs and a chronically inefficient data center. The proper deployment of facility modules, on the other hand, eliminate this wasteful oversizing tendency, because its standardized, modular architecture makes adding or reducing capacity to meet real-world, dynamic demand much easier. This, in conjunction with efficient, integrated power and cooling technologies results in TCO savings of 30% compared to a typical oversized data center operating today.

White Paper #164 Written By:

Wendy Torell

Universal Networking Services is proud to partner with Datapod™ to deliver an unique alternative to the traditional bricks and mortar data center installation. With Datapod we can provide the data center community an alternative solution that maximizes their investment and increases the reliability and availability of their mission-critical facility.  Datapod is an unique, modular data center system that incorporates innovative design and cutting edge mechanical and electrical engineering. It has extended the concept of containerized data centers to include critical site infrastructure such as modular generators, chillers, and deployment services thereby providing a complete infrastructure solution for data centers. By enabling data center users to deploy when they like, where they like and for how long they like, the Datapod system offers performance superior to that of  a “bricks and mortar” data center facility, deploys faster and at a more cost-effective price point.

Please feel free to contact Waite Ave at w.ave@apcdistributors.com or click on contact us to learn more.

“What Is Datapod?” Series-Part I

Posted by on April 26, 2012  |  1 Comment

DATAPOD™ CONTAINERIZED ON-DEMAND DATA CENTER

Click Here To Download Brochure

The Datapod system means you no longer need to run the risk of construction project cost blowouts, delays and compromised outcomes. Datapod can deliver a quality turn-key solution faster and at less cost compared to legacy data center construction projects.

A key dilemma facing legacy data center construction projects is whether or not to build a large data center to cater for possible growth in capacity requirements over the life of the facility or build a smaller data center in the hope that IT requirements do not exceed built capacity before end of life. The chances of acurately predicting your future IT requirement are low and the associated capital risks are high. In contrast, the modular Datapod system allows you to deploy only what you need when you need it, where you need it. Right-sizing your data center site infrastructure is not only capital efficient it is also operationally efficient.

Deploying the right amount of floor space as you need it means cooling and humidification resources are not wasted on conditioning surplus space. Incrementally deploying power and cooling systems to match the actual power and cooling requirements allows these system to run within their most energy efficient mode of operation. Incrementally investing in capacity only when you need it also gives you the best chance of benefiting from future technological improvements. Datapod’s committment to research and development in the area of energy efficient site infrastructure means you benefit from ongoing product enhancements and improved environmental efficiencies over time.

A productised approach to data center site infrastructure allows you to adopt a procurement model that matches your IT operations. Datapod offers an attractive leasing option that means you can now deploy your capital to more productive endeavors rather than having it tied up in legacy data centre projects that have increasingly rapid obsolescent.

Datapod Press Launch

Watch a Datapod Assembly

Datapod Explained

Datapod Interior Virtual Tour

Universal Networking Services is proud to partner with Datapod™ to deliver an unique alternative to the traditional bricks and mortar data center installation. With Datapod we can provide the data center community an alternative solution that maximizes their investment and increases the reliability and availability of their mission-critical facility.  Datapod is an unique, modular data center system that incorporates innovative design and cutting edge mechanical and electrical engineering. It has extended the concept of containerized data centers to include critical site infrastructure such as modular generators, chillers, and deployment services thereby providing a complete infrastructure solution for data centers. By enabling data center users to deploy when they like, where they like and for how long they like, the Datapod system offers performance superior to that of  a “bricks and mortar” data center facility, deploys faster and at a more cost-effective price point.

Please feel free to contact Waite Ave at w.ave@apcdistributors.com or contact us to learn more.

Make Your Data Center More Efficient-TradeOff™ Tools

Posted by on April 25, 2012  |  No Comments

APC TradeOff ToolsTM, are web-based applications with easy-to-use interfaces designed for use in the early stages of data center concept and design development. By enabling data center professionals to experiment with various scenarios regarding virtualization, efficiency, power sizing, capital costs, and other key design issues, APC TradeOff Tools break down major data center planning decisions into a series of smaller, more manageable decisions. Use of these tools helps validate, through modeling, the overall design of a data center.

What are TradeOff Tools?

TradeOff Tools are simple, interactive tools, based on data and science, that make it easy to vary parameters, experiment with “what if” scenarios and make tradeoffs during data center planning.

  • Simple, automated tools to support specific planning decisions
  • Models complex interactions of systems based on data and science
  • One-screen, standardized user interface
  • Instant output allows for rapid creation of “what if” scenarios

When should they be used?

Used early in the planning process, TradeOff Tools help avoid planning roadblocks by making informed and accurate decisions

How do they help in planning a data center?

TradeOff Tools help show quantifiable, tangible benefits of implementing certain technologies and justify project decisions.

Video Tutorial Presentation of APC TradeOff Tools™

Data Center Efficiency Calculator (Click Here To Download):

Impact of alternative power and cooling approaches on energy costs.

The purpose of this tool is to show how various design decisions and operating conditions affect the efficiency and electrical costs of a typical generic data center.  As the user inputs details regarding the power and cooling configuration results are calculated based upon a tested and validated three parameter model.

Profiles a data center and calculates the resulting efficiency and electrical cost based on data center characteristics. Users can then understand the impact each key data center decision has on the data center’s efficiency.

Cooling Economizer Mode PUE Calculator (Click Here To Download):

Impact of geography and cooling characteristics on PUE, energy cost, and carbon emissions.

The purpose of this tool is to compare seven common cooling architectures and demonstrate their expected annual PUE, energy cost, and carbon emissions.  As the user inputs details such as the data center location and power & cooling configuration inputs such as IT inlet temperature, % load, and type of power & lighting, results are calculated.

UPS Efficiency Comparison Calculator (Click Here To Download):

Impact of UPS efficiencies on energy costs and carbon footprint.

The purpose of this tool is to compare the efficiencies of two UPS systems and to show the impact these efficiencies have on electricity cost and carbon footprint.  UPSs may be selected from a pull down list, or users can define their own UPS (Schneider Electric or other vendor).  Pre-populated data was obtained by curve fitting to measured efficiency data .  All measurements were taken in normal operating mode, at typical environmental conditions, with nominal elctrical input and balanced resistive load (PF=1.0) output.

Data Center Carbon Calculator (Click Here To Download):

Impact of changes in data center efficiency on energy costs and carbon footprint.

The purpose of this tool is to recognize how “green” a data center is by converting energy usage rates into carbon emissions. The tool illustrates how hypothetical changes to a data center’s location, efficiency, and power load can impact carbon dioxide emissions and the electric bill.

Illustrates how changes to a data center’s location, efficiency, and power load can impact carbon dioxide emissions and the electric bill. This provides management with a general indication of how “green” their data center is today and how “green” it could be.

Data Center Design Planning Calculator (Click Here To Download):

Impact of physical infrastructure technology and growth plan strategies on key design parameters.

This tool allows key decision makers to analyze these parameters, evaluate tradeoffs, and make decisions, to avoid costly mistakes that can magnify and propagate through later deployment phases.

IT Carbon & Energy Allocation Calculator (Click Here To Download):

Impact of efficiency, load characteristics, and location on energy and carbon allocation for IT users.

The purpose of the tool is to help data center operators assign carbon and energy costs to IT users. Energy (cost) and carbon allocations are computed on a per-server basis, based on an “average” server.  The units of “average” server can then be apportioned to the IT users using a method od choice depending on the business model.  This tool allows IT users to make smarter decisions regarding their total cost, as they consider options such as virtualization and server retirement.

Virtualization Energy Cost Calculator (Click Here To Download):

Impact of server virtualization and data center design choices on energy and space savings.

This tool illustrates potential IT, physical infrastructure, and energy savings resulting from the virtualization of servers. It allows the user to input data regarding data center capacity, load, number of servers, energy cost, and other data center elements.

Comprehends IT and physical infrastructure characteristics and calculates energy savings resulting from the virtualization of servers. This allows the user to test the impact of virtualization and various physical infrastructure improvements on their data center floor space and on their energy consumption.

Data Center Capital Cost Calculator (Click Here To Download):

Impact of physical infrastructure design changes on capital costs.

This tool identifies calculates capital costs based on parameters including load, redundancy, density, and power/cooling characteristics, the tool can project the number of racks required and the floor space required.

Identifies key data center physical infrastructure parameters and calculates capital costs based on those parameters. This allows data center users to judge how changes to data center location, IT load, and cooling and power infrastructure can impact overall capital costs

Data Center Power Sizing Calculator (Click Here To Download):

Impact of server and storage configurations on IT load capacity and required utility input power.

This tool defines basic characteristics of the IT load and calculates how much utility input power would be required to support that load, allowing users to experiment with “what if” scenarios by modifying the load characteristics of servers, mainframes, and storage. Total load is then calculated and the tool generates a corresponding utility power requirement.

Defines basic characteristics of the IT load and calculates how much utility input power would be required to support such a load. This provides users with a general idea of how much power in kilowatts they will need to run their data center.

Data Center AC vs. DC Calculator (Click Here To Download):

Impact on data center efficiency of various AC and DC power distribution architectures.

Users can compare the energy efficiency of four different power distribution architectures, including Legacy AC (typically 208 V with older data center UPS, PDU, and IT power supplies), Best Practice AC (208 V with latest generation UPS, PDU, and IT power supplies), 415 V AC (same modern components as Best Practice AC, but eliminates the PDUs and assumes 230 V AC power supplies), and 380 V DC (uses a theoretical DC UPS, no PDUs, and IT power supplies with 1.5% efficiency benefit).

Compares four different AC and DC power distribution architectures and calculates their respective efficiencies. This allows the user to make an educated decision on the optimal architecture for their data cente

Data Center InRow™ Containment Selector (Click Here To Download):

Impact of preferences and constraints on the recommended containment approach.

This tool generates a prototype rack and row cooling configuration based on the user’s layout preferences and the physical constraints of the room.

Generates a prototype rack and row cooling configuration based on the user’s preferences and the physical constraints of the room. This provides the user with their optimal InRow cooling containment configuration.

InRow Ancillary IT Equipment Cooling Calculator (Click Here To Download):

Impact of IT, cooling, & room characteristics on ability for row-based cooling to support ancillary IT loads.

This calculator helps the data center designer determine if additional cooling must be provided or if the existing row-based cooling is sufficient as miscellaneous ancillary IT equipment is added outside of the rows, such as tape silos, storage equipment, and networking gear.

Find out how Universal Networking Services brings a comprehensive solution from the utility pole to the server and assists with navigating the complex waters of most size and scope of projects. Whether you are upgrading, retrofitting or developing a new design-build, UNS and its partners generate efficient, scalable, reliable and manageable critical infrastructure solutions to your organization. Our holistic, common sense approach lowers our clients Total Cost of Ownership (TCO) and maximizes efficiencies offered by the advancements in critical power and cooling infrastructure.

Please feel free to contact us to learn more.

Six Reasons Why Modular Power and Cooling Plants Will Make Traditional Data Center Designs Obsolete

Posted by on April 22, 2012  |  No Comments

Neil Rasmussen (Senior Vice President of Innovation, IT Business for Schneider Electric) delivers keynote presentation that asserts that many traditional data centers are inefficient, costly and incompatible with high density IT deployments, and that pre-engineered and pre-manufactured power and cooling subsystems based on standardized modules can provide optimized and predictable performance faster and at lower cost.

Uptime Institute Symposium 2011 Video Clip (Click Here To View)

Six Reasons Why Modular Power and Cooling Plants Will Make Traditional Data Center Designs (Click Here To Download Green Data Center Conference Presentation)

Presentation Highlights Delivered by Neil Rasmussen:

Traditional data center defined:

  • Power and cooling devices from various manufacturers are integrated for a project
  • System performance is predicted by analysis
  • Controls are created for the project
  • Management software is customized for the project
  • Cooling is by CRAC/CRAH units located in the IT room
  • Air is distributed under floor via vented tiles
  • Outdoor heat rejection via dry cooler, condenser, or cooling tower

Modular power and cooling plants defined:

  • End-to-end power and cooling systems are pre-engineered and pre-manufactured
  • Standard building blocks are available
  • Modules may be internally fault tolerant, and can be combined to achieve redundancies
  • Equipment arrives in pre-packaged modules, such as skids, containers, or kits
  • System performance is guaranteed by spec
  • Controls are standard
  • Management software is standard for the modules

Reason #1: Economizer regulations

  • ASHRAE, LEED, and local regulations require economizer modes
    • Old model: Economizer assists mechanical plant, when possible
    • New model: Mechanical plant assists economizer, when needed
  • Maximization of free cooling is a complex design and control problem, difficult to achieve in a unique design
  • An integrated design, that considers IT supply temperatures and airflows, load factors, and ambient conditions is best achieved in a standardized, pre-engineered system

Reason #2: Dynamic power variation

  • Power management functions in IT equipment will play a major role in reducing overall energy use of data centers
    • Old model: Long term adaptations to slow changes in load
    • New model: Cooling plant optimizes for wide swings in IT load
  • Traditional plant design responds through interventions (moving tiles, turning equipment on and off, adding equipment)
  • An optimizing cooling plant adapts to changing load and airflow requirements by design

Reason #3: Speed of deployment

  • Modularity is not automatically faster
  • Modularity allows standardization. It is standardization that makes cycle time faster
    • Old model: 18 month design-build-commission cycle
    • New model: 4 month order-install cycle. Design is off-the-shelf. Systems mainly pre   commissioned.
  • Eventually standard power and cooling modules will be inventory items

Reason #4: Scaling requirements

  • Oversizing remains a major drag on the data center industry
  • It is the dominant contributor to energy inefficiency
  • It causes waste of CAPEX and OPEX
    • Old model: Build it now because it is too painful – slow – risky – burdensome – costly to adapt   later
    • New model: Modular design for scalability
  • Capacity can also be scaled to meet changes in power density and redundancy

Reason #5: Control & management system costs

  • Controls and management system cost in traditional data center is around $.50 -$1.50 per watt (under 10% of system cost)
  • To actually correctly engineer such unique systems for a traditional data center should cost about $5 per watt (nearly equal to expected system cost) if we
    • Optimized for energy savings
    • Did full testing under all operating and fault conditions
    • Documented the system fully
    • Embedded effective diagnostics
    • Did appropriate fault-tree and event-tree analysis
    • Designed to accommodate expected changes

Reason #6: Lower installed and operating costs
Extra installed costs

  • Container / skid / package costs
  • More smaller devices replace fewer larger devices

Installed cost savings

  • One-time engineering
  • Defer costs of capacity not yet required
  • Programming & configuration
  • Rigging
  • Documentation
  • Shipping / installing damage
  • Factory vs. field labor
  • Less field testing

Extra operating costs

  • None identified

Operating cost savings

  • Reduced expertise requirements
  • Energy costs
  • No maintenance costs on capacity not yet required

Conclusion

  • Standardized modular power and cooling plants have lower cost and better performance
  • Challenges such as dynamic power, economizer optimization, and high density will accelerate the end of traditional design approaches
  • Modular approaches to cooling plants just as effective for indoor IT rooms as they are for IT containers

Resources

“Economizer Modes of Data Center Cooling Systems” Full White Paper 132 (Download Here)

“Containerized Power and Cooling Modules for Data Centers” Full White Paper 163 (Download Here)

“Hot Aisle vs. Cold Aisle Containment” Full White Paper 135 (Download Here)

APC White Paper Library (Click Here)

APC TradeOff Tools™ Library (Click Here)

Universal Networking Services is proud to partner with Datapod to deliver an unique alternative to the traditional bricks and mortar data center installation. With Datapod we can provide the data center community an alternative solution that maximizes their investment and increases the reliability and availability of their mission-critical facility.  Datapod is an unique, modular data center system that incorporates innovative design and cutting edge mechanical and electrical engineering. It has extended the concept of containerized data centers to include critical site infrastructure such as modular generators, chillers, and deployment services thereby providing a complete infrastructure solution for data centers. By enabling data center users to deploy when they like, where they like and for how long they like, the Datapod system offers performance superior to that of  a “bricks and mortar” data center facility, deploys faster and at a more cost-effective price point.

Please feel free to contact us to learn more.

Containerized Power and Cooling Modules for Data Centers

Posted by on April 18, 2012  |  No Comments

White Paper 163

When data center stakeholders are faced with the challenge of deploying new data center power and cooling infrastructure (i.e., chillers, pumps, CRACS, CRAHS, UPS, PDUs, switchgear, transformers etc.), is it better for them to convert an existing room within the building (if this is at all an option) or to construct an extension to house additional power and cooling equipment? Or is it more cost effective and technically feasible to source the power and cooling from a series of facility modules?

Facility modules are pre-engineered, pre-assembled/integrated, and pre-tested data center physical infrastructure systems (i.e., power and cooling) that are delivered as standardized “plug-in” modules to a data center site. This contrasts with the traditional approach of provisioning physical infrastructure for a data center with unique one-time engineering, and all assembly, installation, and integration occurring at the construction site. The benefits of facility modules include cost savings, time savings, simplified planning, improved reliability, improved agility, higher efficiency, and a higher level of vendor accountability.

Deployment of facility modules results in a savings of 60% in deployment speed and 13% or more in first cost when compared to a traditional build out of the same infrastructure (see Figures 1 and 6). Cost savings are even more dramatic (30% or more) when the traditional data center is overbuilt in capacity and provisioned upfront with typical power and cooling systems and controls.

Traditional 40 ft by 8 ft (12.2 m by 2.4 m) ISO shipping containers are the most recognizable form of facility module. However, facility modules can also be built on a skid or delivered as multiple form factor modular buildings. For this reason, this paper will use the term “facility modules” and not “containers” when describing the various modular solutions. This paper provides data center professionals with the information needed to justify a business case for data center facility power and cooling modules.

“Containerized Power and Cooling Modules for Data Centers” Full White Paper 163 (Download Here)

Executive Summary:

Standardized, pre-assembled and integrated data center facility power and cooling modules are at least 60% faster to deploy, and provide a first cost savings of 13% or more compared to traditional data center power and cooling infrastructure. Facility modules, also referred to in the data center industry as containerized power and cooling plants, allow data center designers to shift their thinking from a customized “construction” mentality to a standardized “site integration” mentali- ty. This white paper compares the cost of both scenarios, presents the advantages and disadvantages of each, and identifies which environments can best leverage the facility module approach.

Contents:

  • Upfront cost of standardized vs. customized
  • Further cost savings of facility modules
  • Additional facility module benefits
  • Facility module drawbacks
  • Types of facility modules
  • Applications of data center facility modules

Conclusion:

The introduction of facility power and cooling modules presents an alternative to the traditional “craft industry” approach of designing and building data centers. New economic realities make it no longer possible to bear the brunt of heavy upfront costs and extended construction times for building a traditional data center. The availability of pre-engineered facility modules allows the planning cycle to switch from an onsite construction focus to onsite integration of pre-manufactured, pre-tested blocks of power and cooling. The result of this change in focus is a lower cost, and faster delivery solution.

The ideal applications for facility modules are as follows:

1. A new data center seeking faster, cheaper ways to “step and repeat” computer power and support systems (especially when load growth is uncertain).

2. An organization with vacant space (i.e. warehouse space) that can be leveraged for a more quickly-deployed new data center without the expense of brick and mortar con- struction.

3. Existing data centers that are constrained by space and power / cooling capacity.

Facility modules can power and cool traditional data center IT rooms that are out of power and cooling capacity. They can also be used to power and cool IT modules (containers of IT equipment). Among leading edge corporations, a migration from brick and mortar to facility module “parks” will take place. Cloud computing business models will also accelerate the deployment of rapid facility module provisioning.

White Paper #163 Written By:

Dennis Bouley

Wendy Torell

Universal Networking Services is proud to partner with Datapod to deliver an unique alternative to the traditional bricks and mortar data center installation. With Datapod we can provide the data center community an alternative solution that maximizes their investment and increases the reliability and availability of their mission-critical facility.  Datapod is an unique, modular data center system that incorporates innovative design and cutting edge mechanical and electrical engineering. It has extended the concept of containerized data centers to include critical site infrastructure such as modular generators, chillers, and deployment services thereby providing a complete infrastructure solution for data centers. By enabling data center users to deploy when they like, where they like and for how long they like, the Datapod system offers performance superior to that of  a “bricks and mortar” data center facility, deploys faster and at a more cost-effective price point.

Please feel free to contact us to learn more.

Avoiding Costs from Oversizing Data Center and Network Room Infrastructure

Posted by on April 15, 2012  |  No Comments

White Paper 37

This paper will show that the single largest avoidable cost associated with typical data center and network room infrastructure is oversizing. The utilization of the physical and power infrastructure in a data center or network room is typically around 50-60%. The unused capacity of data centers and network rooms is an avoidable capital cost, and it also represents avoidable operating costs, including maintenance and energy.

This paper is constructed in three parts. First, the facts and statistics related to oversizing are described. Next, the reasons why this occurs are discussed. Finally, an architecture and method for avoiding these costs is described.

“Avoiding Costs from Oversizing Data Center and Network Room Infrastructure” Full White Paper (Download Here)

Executive Summary:

The physical infrastructure of data centers and network rooms is typically oversized by five times the actual capacity at start-up and more than one and a half times the ultimate actual capacity. Oversizing statistics from actual customer installations are presented. The TCO costs associated with oversizing are quantified to be in excess of 30%. The fundamental reasons why oversizing occurs are discussed and an architecture and method for avoiding it is described.

Contents:

  • Facts and statistics related to oversizing
  • Why does oversizing occur?
  • Fundamentals reasons for oversizing
  • Architecture and method to avoid oversizing

Conclusion:

Data centers and network rooms are routinely oversized to more than 1 1/2 times their ultimate actual capacity. Oversizing drives excessive capital, maintenance, and energy expenses, on the order of 30%. This is a substantial fraction of the overall lifecycle cost. Most of this excess cost can be recovered by implementing a method and architecture that can adapt to changing requirements in a cost-effective manner while at the same time providing high availability.

White Paper #37 Written By:

Neil Rasmussen

Find out how Universal Networking Services brings a comprehensive solution from the utility pole to the server and assists with navigating the complex waters of most size and scope of projects. Whether you are upgrading, retrofitting or developing a new design-build, UNS and its partners generate efficient, scalable, reliable and manageable critical infrastructure solutions to your organization. Our holistic, common sense approach lowers our clients Total Cost of Ownership (TCO) and maximizes efficiencies offered by the advancements in critical power and cooling infrastructure.

Please feel free to contact us to learn more.

Universal Networking Services Launches Institute for Data Center Professionals

Posted by on April 12, 2012  |  No Comments

Universal Networking Services Launches Institute for Data Center Professionals

Data center education that will lay the critical foundation to run an efficient data center.

St. Petersburg, Florida, April 12, 2012: Universal Networking Services (UNS), a leading provider of mission-critical power and cooling infrastructure products and services today announced the launch of Universal Networking Services Institute for Data Center Professionals.

Waite Ave, Vice-President of Operations,  states “Today’s IT departments face complex challenges that demand forward looking IT solutions.  Corporate CIOs, Facility Mangers, and IT Managers are facing a real crisis when it comes to the efficiency of their critical facilities.  Not least among these challenges is the delicate balancing act of ensuring reliability without energy cost getting out of control.  High-density deployments are creating cooling challenges that cannot be solved by the current design practice. For example, data center cooling systems must be more adaptable to changing requirements.  How cooling is deployed into today’s data centers has a major effect on operating costs.  Most vendors are not addressing the pressing problems created by the current design practices or equipment.  Our “Educational Series for Data Center Professionals” provides educational opportunities while showcasing  the latest in technologies for data center power, cooling, monitoring and management.  Our customized training series provides the education that will lay the critical foundation to run an efficient data center.   At UNS, our philosophy is to offer the data center professional the tools and resources to lower their Total Cost of Ownership (TCO) and maximize efficiencies offered by the advancements in today’s data center architecture.  We are very excited to team directly with the data center community to find real-time solutions to their unique challenges.”

About UNS “Educational Series for Data Center Professionals”:

The “Educational Series For Data Center Professionals” is a customized training series conducted at YOUR facility that provides the education that will lay the critical foundation for your organization to run an efficient data center.  UNS works diligently with you and your staff to customize a curriculum specific to your facilities requirements that educate and showcase the latest in technologies and best practices for data center power, cooling, monitoring, security and management.  Choose either topics from current course curriculum (see course curriculum below) or customize your training.   At UNS, we believe education is key to controlling your data center costs.  With that in mind, we couple your customized training session with our signature Critical Facility Energy Profile (CFEP) assessment.  To highlight, our CFEP service provides an on-site, non-invasive, risk free analysis of your current Network Critical Physical Infrastructure (NCPI) to determine the baseline efficiency of your data center.   On the first day we will perform a site/data center assessment (CFEP), during which, items that are effecting efficiency and reliability are compiled.  On the second day, we return to the facility to perform a customized education/training session on today’s best strategies for power, cooling, monitoring security and management using examples from YOUR facility.  The education provided will drive your organization’s total-cost-of-ownership (TCO) as low as possible.   UNS is committed to understanding our clients challenges and provide the tools needed to operate their businesses with reliability and maximum efficiency.  Contact us today to learn more about this unique educational opportunity.

About Current “Educational Series for Data Center Professionals” Course Curriculum:

“POWER FUNDAMENTALS”-If you’ve ever asked yourself…”What’s the difference between kVA and kW?  AC and DC, isn’t that a band? Single-phase or three-phase?…then this is the course for you! In this course, students learn the fundamentals of AC and DC power, from generation to application.

“POWER DISTRIBUTION”-“With great power comes great responsibility.”  One can have all the power in the world but efficiently distributing that power to your critical equipment is the trick that makes the difference between business as usual or lights out!  In this course, students learn the fundamentals and application of efficient power deliver in terms of both off-site and on-site power generation.

“EFFICIENT POWER MANAGEMENT-OPTIMIZING TCO”- “Generator? Check. UPS? Check. Doors secured? Check. Red lights? Check…uh-oh! What do we do now? Who will we call?  Is this covered under a service agreement?” Managing your assets is one thing but doing so in a manner that lowers your TCO and allows you to sleep better at night takes some strategy.  Increasing availability and reliability while continuously decreasing costs means you’ll have to know when to break from the crowd and try less conventional methods.  This course is designed for the professional that has a solid understanding of both “Power Fundamentals” and “Power Distribution” and is ready to develop a strategy to manage their time, manpower and assets with maximum efficiency.

“CRITICAL COOLING 101-FUNDAMENTALS OF AIR CONDITIONING”-This course explains the fundamentals of air conditioning systems and how they can be leveraged in a data center to your advantage.  Topics include:  The Properties of Heat Transfer, The Ideal Gas Law, The Refrigeration Cycle, Condensation Control, and Comfort vs. Precision Cooling.  With a solid understanding of air conditioning principles, this course enables students to make knowledgeable decision on what air conditioning solutions are right for their data center-solutions based on fact, rather than sales and marketing strategy.

“EFFICIENT COOLING-OPTIMIZING COOLING STRATEGIES AND ARCHITECTURE”-Today’s servers generate significantly more heat, and in more concentrated, confined space than they did 20 years ago. So, why are data centers still using the same cooling strategies of yesteryear? This course takes a hard look at data center cooling architectures from many angles: efficiency, reliability, TCO, feasibility and availability, enabling students to make the best choices in cooling their critical equipment.  “Understanding the difference between comfort cooling and critical cooling; understanding the different types of cooling architectures and their deployment; and developing a method of choosing one cooling strategy over another” are all topics discussed in this course offering.

About Universal Networking Services:

UNS specializes in mission-critical power and cooling solutions for wiring closets, server rooms, and data centers.  UNS provides product acquisition, design/ engineering, installation management and maintenance services.

Learn More:

To learn more about UNS Institute for Data Center Professionals please contact Waite Ave at w.ave@apcdistributors.com or 281-825-9790.

Filed Under: Uncategorized

Universal Networking Services Institute for Data Center Professionals

Posted by on April 6, 2012  |  No Comments

Data center education that will lay the critical foundation to run an efficient data center.

Data center efficiency should be a topic of significant importance to all data center operators. At Universal Networking Services (UNS), our philosophy is simple: knowledge is key to data center efficiency!  UNS Institute for Data Center Professionals offers the data center community priceless educational opportunities through numerous gateways:

Educational Gateways:

“Educational Series For Data Center Professionals”

“Breakfast and Learn Series For Data Center Professionals”

Universal Networking Services Blog

Data Center Critical Power and Cooling LinkedIn Group

Universal Networking Services Twitter

About UNS “Educational Series For Data Center Professionals”:

The “Educational Series For Data Center Professionals” is a customized training series conducted at YOUR facility that provides the education that will lay the critical foundation for your organization to run an efficient data center.  UNS works diligently with you and your staff to customize a curriculum specific to your facilities requirements that educate and showcase the latest in technologies and best practices for data center power, cooling, monitoring, security and management.  Choose either topics from current course curriculum (see course curriculum below) or customize your training.   At UNS, we believe education is key to controlling your data center costs.  With that in mind, we couple your customized training session with our signature Critical Facility Energy Profile (CFEP) assessment.  To highlight, our CFEP service provides an on-site, non-invasive, risk free analysis of your current Network Critical Physical Infrastructure (NCPI) to determine the baseline efficiency of your data center.   On the first day, we will perform a site/data center assessment (CFEP), during which, items that are affecting efficiency and reliability are compiled.  On the second day, we return to the facility to perform a customized education/training session on today’s best strategies for power, cooling, monitoring security and management using examples from YOUR facility.  The education provided will drive your organization’s total-cost-of-ownership (TCO) as low as possible.   UNS is committed to understanding our clients challenges and provide the tools needed to operate their businesses with reliability and maximum efficiency. Contact us today to learn more about this unique educational opportunity.

Current “Educational Series For Data Center Professionals” Course Curriculum:

“POWER FUNDAMENTALS”-If you’ve ever asked yourself…”What’s the difference between kVA and kW?  AC and DC, isn’t that a band? Single-phase or three-phase?…then this is the course for you! In this course, students learn the fundamentals of AC and DC power, from generation to application.

“POWER DISTRIBUTION”-“With great power comes great responsibility.”  One can have all the power in the world but efficiently distributing that power to your critical equipment is the trick that makes the difference between business as usual or lights out!  In this course, students learn the fundamentals and application of efficient power delivered in terms of both off-site and on-site power generation.

“EFFICIENT POWER MANAGEMENT-OPTIMIZING TCO”- “Generator? Check. UPS? Check. Doors secured? Check. Red lights? Check…uh-oh! What do we do now? Who will we call?  Is this covered under a service agreement?” Managing your assets is one thing but doing so in a manner that lowers your TCO and allows you to sleep better at night takes some strategy.  Increasing availability and reliability while continuously decreasing costs means you’ll have to know when to break from the crowd and try less conventional methods.  This course is designed for the professional that has a solid understanding of both “Power Fundamentals” and “Power Distribution” and is ready to develop a strategy to manage their time, manpower and assets with maximum efficiency.

“CRITICAL COOLING 101-FUNDAMENTALS OF AIR CONDITIONING”-This course explains the fundamentals of air conditioning systems and how they can be leveraged in a data center to your advantage.  Topics include:  The Properties of Heat Transfer, The Ideal Gas Law, The Refrigeration Cycle, Condensation Control, and Comfort vs. Precision Cooling.  With a solid understanding of air conditioning principles, this course enables students to make knowledgeable decision on what air conditioning solutions are right for their data center-solutions based on fact, rather than sales and marketing strategy.

“EFFICIENT COOLING-OPTIMIZING COOLING STRATEGIES AND ARCHITECTURE”-Today’s servers generate significantly more heat, and in more concentrated, confined space than they did 20 years ago. So, why are data centers still using the same cooling strategies of yesteryear? This course takes a hard look at data center cooling architectures from many angles: efficiency, reliability, TCO, feasibility and availability, enabling students to make the best choices in cooling their critical equipment.  “Understanding the difference between comfort cooling and critical cooling; understanding the different types of cooling architectures and their deployment; and developing a method of choosing one cooling strategy over another” are all topics discussed in this course offering.

About UNS “Breakfast and Learn Series for Data Center Professionals”:

The “Breakfast and Learn Educational Series for Data Center Professionals” offers the data center community multiple opportunities to learn from their peers, share experiences, and expand industry knowledge.  Our educational sessions are conducted throughout the United States quarterly and will be advertised via our Data Center Critical Power and Cooling LinkedIn Group and/or follow us on Twitter.  Our “Breakfast and Learn Series” can also be customized and conducted at your own facility.  For more information on our “Breakfast and Learn Series” please contact us.

Current “Breakfast and Learn” Discussions:

“RIGHT-SIZING VERSUS OVER-SIZING: EFFICIENCY IN THE DATA CENTER”- Forecasting and measuring the total cost of ownership (TCO) for Data Center Physical Infrastructure (DCPI) is essential for return-on-investment (ROI) analysis.  Oversizing is the main contributor to excess TCO.  Oversizing creates inefficiencies in the data center including excess capital cost, operating cost, and specifically energy cost.  The average data center operator can achieve the highest return investment in relation to DCPI through right-sizing.  Right-sizing the DCPI system to the load is the key to optimizing TCO and has the most impact on DCPI electrical consumption.  Right-sizing can potentially eliminate up to 50% of the electrical bill in real-world scenarios.  For example, potential electricity cost savings for a typical 1 MW data center has been shown to be $2,000,000 to $4,000,000 over a typical 10-year life to the facility.  Data center efficiency is key to controlling your energy costs and should be a topic of significant importance to all data center operators.  This discussion is available through our “Breakfast and Learn Educational Series For Data Center Professionals”.

“IS PERIMETER COOLING DEAD?”-Traditional data center “room” cooling is unable to accommodate the latest generation of high and variable density IT equipment resulting in cooling systems that are inefficient, unpredictable, and low in power density.  To address these problems, row-oriented and rack-oriented cooling architectures have been developed.  Our presentation, “Is Perimeter Cooling Dead” examines and contrasts the 3 basic cooling approaches:  room, row, and rack architectures.  Each approach has an appropriate application but row-orientated cooling is emerging as the solution of choice for most next generation data centers.  Next generation data centers demand the flexibility, predicability, scalability, reduced electrical power consumption, reduced TCO and optimum availability that row and rack-oriented cooling architectures can provide.  Additionally, the factors that gave rise to the establishment and use of the raised floor is no longer justified or desirable.  To learn more about this topic, “Is Perimeter Cooling Dead” is available for your organization through our unique “Breakfast and Learn” Educational Series For Data Center Professionals.

About Universal Networking Services Blog “Don’s Corner”:

Data center industry blog that discusses the most relevant topics challenging the data center industry today.  Don Melchert, Critical Facility Specialist, shares in “Don’s Corner” his extensive knowledge and experience from the mission critical arena.  “Don’s Corner” highlights real world experiences to provide you the tools to maximize your efficiency while lowering your operating costs.

About Universal Networking Services LinkedIn “Data Center Critical Power and Cooling Group”:

Join UNS and industry peers on an open forum to discuss the following topics relating to data center “best practices”.  Key areas are:

– Power

– Cooling

– Racks- Security

– Management

– Fire Suppression

– Personnel

Submit your questions or comments on issues that affect your data center and have them answered by our Critical Facility Specialist.  We provide valuable insight to common problems that often plague modern data centers. Join the discussion at Data Center Critical Power and Cooling LinkedIn Group.

About Universal Networking Services Twitter:

Follow us on Twitter as we tweet/share industry related news, event postings, and company updates.

APC Data Center University

Data Center University™ (DCU) offers industry-leading education for IT professionals‚ facilities managers‚ engineers‚ designers‚ consultants‚ and anyone involved in the critical decisions and infrastructure planning of data centers worldwide. The changing nature of data centers‚ and the technology that impacts them‚ makes it even more critical that employees remain up to date on the current theories and best practices for issues around topics of power‚ cooling‚ management‚ security‚ and planning.

DCU provides a full curriculum of courses that educate and deliver up-to-the-minute information when and where you need it. Our online program is intended to be manageable and attainable‚ and with our Certification exam‚ you can quantify your learning and experience as a true data center professional!

Energy University by Schneider Electric

Schneider Electric, the global specialist in Energy Management has launched an e-learning website Energy University to provide the latest information and professional training on Energy Efficiency concepts and best practice! All in ONE Place – All in ONE site!

In addition to learning new energy saving ideas that directly contribute to the overall well-being of the earth; you will also become an even more valuable employee by contributing to the bottom line for your company. Learn something new today and apply the knowledge tomorrow. Become an Energy Efficiency Champion! Read more…

The Top 9 Mistakes in Data Center Planning

Posted by on April 3, 2012  |  1 Comment

White Paper 145

How can you avoid making major mistakes when entering the build and expansion world?

The key lies in the methodology you use to design and build your data center facilities. All too often, companies base their plans on watts per square foot, cost to build per square foot, and tier level—criteria that may be misaligned with their overall business goals and risk profile. Poor planning leads to poor use of valuable capital and can increase operational expense.

Many organizations get overwhelmed, focusing on “speeds and feeds,” green initiatives, concurrent maintainability, power usage effectiveness (PUE) and Leadership in Energy and Environmental Design (LEED) certification. All of these criteria are critical in the decision making process. However, the details often overshadow the big picture. Most companies miss the business opportunity in a data center expansion—an expansion driven by a holistic approach.

While there are numerous consultants in the field to help you find your way, assessing ideas and input can be overwhelming. Organizations with critical capacity requirements in the 1-3 megawatt range may fall into this risk category. The critical nature of mid-size users is no less important than mega users; however internal technical expertise to drive proper expansion plans may be limited. The result is information overload from multiple sources, leading to confusion and poor decision making.

“The Top 9 Mistakes in Data Center Planning” Full White Paper 145 (Click Here)

Executive Summary:

Why do so many data center builds and expansions fail? This white paper answers the question by revealing the top 9 mistakes organizations make when designing and building new data center space, and examines an effective way to achieve success through the Total Cost of Ownership (TCO) approach.

Contents:

  • Big mistake 1:  Failure to take TCO into account
  • Big mistake 2:  Poor cost-to-build
  • Big mistake 3:  Improper design criteria
  • Big mistake 4:  Site selection before design criteria
  • Big mistake 5:  Space planning before design criteria
  • Big mistake 6:  Designing into dead-end
  • Big mistake 7:  Misunderstanding PUE
  • Big mistake 8:  Misunderstanding LEED certification
  • Big mistake 9:  Overcomplicated designs

Conclusion:

Although many data center builds and expansions result in failure, yours doesn’t have to. By avoiding the top 9 mistakes outlined in this paper, you will be well on your way to achieving success. In summary:

  • Start with a Total Cost of Ownership approach:
    • Evaluate your risk profile against your business expense profile.
    • Create a model that incorporates CapEx, OpEx and energy costs
  • Determine your design criteria and performance characteristics
    • Base this criteria on your risk profile and business goals
    • Allow those criteria to truly determine the design, including tier level, location and space plan—not the other way around
  • Design with simplicity and flexibility
    • Use a design that will meet your uptime requirements, but will also keep costs low during construction and throughout operation—simplicity is key.
    • Accommodate unplanned expansion by incorporating flexibility into the design
  • If PUE and LEED are part of your criteria, become educated on the common misunderstandings and expenses associated with each.

Through proper planning using the TCO approach, you can create a data center facility that meets your organization’s performance goals and business needs today and tomorrow.

White Paper #145 Written By:

Mike M. Hagan

John Lusky

Tuan Hoang, P.E.

Scott Walsh, P.E., LEED A.P.

Find out how Universal Networking Services brings a comprehensive solution from the utility pole to the server and assists with navigating the complex waters of most size and scope of projects. Whether you are upgrading, retrofitting or developing a new design-build, UNS and its partners generate efficient, scalable, reliable and manageable critical infrastructure solutions to your organization. Our holistic, common sense approach lowers our clients Total Cost of Ownership (TCO) and maximizes efficiencies offered by the advancements in critical power and cooling infrastructure.

Please feel free to contact us to learn more.

Preventive Maintenance Strategy for Data Centers

Posted by on April 1, 2012  |  No Comments

White Paper 124

This white paper highlights data center power and cooling systems preventive maintenance (PM) best practices. Hands-on PM methods (i.e., component replacement, recalibration) and non-invasive PM techniques (i.e., thermal scanning, software monitoring) are reviewed. The industry trend towards more holistic and less component-based PM is also discussed.

The term preventive maintenance (also known as preventative maintenance) implies the systematic inspection and detection of potential failures before they occur. PM is a broad term and involves varying approaches to problem avoidance and prevention depending upon the criticality of the data center. Condition-based maintenance, for example, is a type of PM that estimates and projects equipment condition over time, utilizing probability formulas to assess downtime risks.

PM should not be confused with unplanned maintenance, which is a response to an unanticipated problem or emergency. Most of the time, PM includes the replacement of parts, the thermal scanning of breaker panels, component / system adjustments, cleaning of air or water filters, lubrication, or the updating of physical infrastructure firmware.

At the basic level, PM can be deployed as a strategy to improve the availability performance of a particular data center component. At a more advanced level, PM can be leveraged as the primary approach to ensuring the availability of the entire data center power train (generators, transfer switches, transformers, breakers and switches, PDUs, UPSs) and cooling train ACs, CRAHs, humidifiers, condensers, chillers).

A data center power and cooling systems preventive maintenance (PM) strategy ensures that procedures for calendar-based scheduled maintenance inspections are established and, if appropriate, that condition-based maintenance practices are considered. The PM strategy should provide protection against downtime risk and should avoid the problem of postponed or forgotten inspection and maintenance. The maintenance plan must also assure that fully trained and qualified maintenance experts observe the physical infrastructure equipment (i.e., look for changes in equipment appearance and performance and also listen for changes in the sounds produced by the equipment) and perform the necessary work.

“Preventative Maintenance Strategy for Data Centers” Full White Paper 124 (Click Here)

Executive Summary:

In the broadening data center cost-saving and energy efficiency discussion, data center physical infrastructure preventive maintenance (PM) is sometimes neglected as an important tool for controlling TCO and downtime. PM is performed specifically to prevent faults from occurring. IT and facilities managers can improve systems uptime through a better understanding of PM best practices. This white paper describes the types of PM services that can help safeguard the uptime of data centers and IT equipment rooms. Various PM methodologies and approaches are discussed. Recommended practices are suggested.

Contents:

  • Introduction
  • PM Outcomes
  • Evolution of PM
  • Evidence of PM progress
  • Why Physical Infrastructure Components Fail
  • Recommended Practices
  • PM Options

Conclusion:

PM is a key lifeline for a fully functioning data center. Maintenance contracts should include a clause for PM coverage so that the data center owner can rest assured that comprehensive support is available when required. The current PM process must expand to incorporate a “holistic” approach. The value add that PM services provide to common components today (such as a UPS) should be expanded to the entire data center power train (generators, transfer switches, transformers, breakers and switches, PDUs, UPSs) and cooling train (CRACs, CRAHs, humidifiers, condensers, chillers).

As of today, the PM provider in the strongest position to provide such a level of support is the global manufacturer of data center physical infrastructure. An integrated approach to PM allows the data center owner to hold one partner accountable for scheduling, execution, documentation, risk management, and follow up. This simplifies the process, cuts costs, and enhances overall systems availability levels.

White Paper 124 Written By:

Thierry Bayle

Find out how Universal Networking Services can help your organization incorporate a preventative maintenance program that will keep your APC by Schneider Electric systems running at maximum efficiency.  Our service policy is to prevent problems before they occur. Advance power and cooling systems contain components and parts that will wear out over time. Proper care and regular maintenance will help you avoid unnecessary downtime, saving you time and money. To be sure your system is receiving the care it needs, you need specially trained staff, who are familiar with the inner workings of the APC by Schneider Electric products. Preventive Maintenance services give your system the level of service it needs and you the peace of mind you deserve.

Please feel free to contact us to learn more.