Posts Tagged data center solutions

Why Would Companies Buy A Modular Solution?

Posted by on November 29, 2012  |  No Comments

FINANCIAL

CAPEX: Data center design and construction costs can vary widely, according to a large number of criteria. This makes cost comparisons of all kinds of construction difficult, contentious and sometimes misleading. A CAPEX cost of $15m per MW of IT load is a mid-level estimate for a traditional build that would be appropriate for enterprise use. That is the number used in a recent report by 451 Group (The Economics of Prefabricated Modular Data Centers)  for a traditional build, to which prefabricated modular CAPEX costs are compared. The middle 50% of CAPEX cost estimates for prefabricated modular designs are in the range of $8m-11m/MW. The median estimate is around $9m/MW. Prefabricated modular design and delivery of data centers can reduce CAPEX costs by 10-30%.

Deferred Capital Cost: As a large capital expense, building a data center is typically a large project that requires a lot of money upfront to anticipate forecasted IT needs for the next 10 to 15 years. Rapidly changing technology in the data center makes it difficult to justify such a large capital expense for a building that will only hopefully keep pace with technology demands. Modular solutions can be seen as a way to intelligently apply capital to the data center in line with changing technology and IT requirements.

Operating Expense: The engineering in modular solutions has proven, known efficiency throughout subsystems which allow regular operating expenses to be optimized. Optimized power and cooling built-in to modules equate to a lower overall operating expense. The fact that modules are engineered products means that internal subsystems are tightly integrated which results in efficiency gains in power and cooling in the module. First generation and pure IT modules will most likely not have efficiency gains other than those enjoyed from a similar containment solution inside of a traditional data center. Having a modular power plant in close proximity to the IT it serves will save money in costly distribution gear and power loss from being so close. There are opportunities to use energy management platforms within modules as well, with all subsystems being engineered as a whole.

Real Estate: Modules allow operators to build out in increments of power instead of space. Many second generation modular products feature evaporative cooling, taking advantage of outside air. A radical shift in data center design takes away the true brick and mortar of a data center, placing modules in an outdoor park, connected by supporting infrastructure and protected only by a perimeter fence. Some modular solutions offer stacking also — putting twice the capacity in the same footprint.

BUSINESS ALIGNMENT

Rightsizing: Modular design ultimately enables an optimized delivery approach for matching IT needs. This ability to right-size infrastructure as IT needs grow enables enterprise alignment with IT and data center strategies. The module container can also provide capacity when needed quickly for projects or temporary capacity adjustments.

Supply Chain: Many of the attributes of a modular approach speak to the implementation of a supply chain process at the data center level. As a means of optimizing deployment, the IT manager directs vendors and controls costs throughout the supply chain.

Total Cost of Ownership:

  • Acquisition: Underutilized infrastructure due to over-building is eliminated by being deployed as needed.
  • Installation: Weeks and months instead of more than 12 months.
  • Operations: Standardized components to support and modules are engineered for extreme-efficiency.
  • Maintenance: Standardized components enable universal maintenance programs.

 

OPERATIONAL

Speed of Deployment: Modular solutions have incredibly quick timeframes from order to deployment. As a standardized solution it is manufactured and able to be ordered, customized and delivered to the data center site in a matter of months (or less). Having a module manufactured also means that the site construction can progress in parallel, instead of a linear, dependent transition.

Standardization: Seen as a part of the industrialization of data centers the modular solution is a standardized approach to build a data center, much like Henry Ford took towards building cars. Manufactured data center modules are constructed against a set model of components at a different location instead of the data center site. Standardized infrastructure within the modules enable standard operating procedures to be used universally. Since the module is prefabricated, the operational procedures are identical and can be packaged together with the modular solution to provide standardized documentation for subsystems within the module.

Scalability: With a repeatable, standardized design, it is easy to match demand and scale infrastructure quickly. The only limitations on scale for a modular data center are the supporting infrastructure at the data center site and available land. Another characteristic of scalability is the flexibility it grants by having modules that can be easily replaced when obsolete or if updated technology is needed.

Mobility and Placement: A modular data center can be delivered where ever its desired by the end user. A modular solution is mobile in the sense that it can be transported in pieces and reassembled quickly on-site. Mobility is an attractive feature for those looking at modular for disaster recovery solutions.

Density and PUE: Density in a traditional data center is typically 100 watts per square foot. In a modular solution the space is used very efficiently and features densities as much as 20 kilowatts per cabinet. Because the module is pre-engineered and standardized densities are higher and the effective use of electrical power is improved.  (The Economics of Prefabricated Modular Datacenters; 451 Group, 2012).

Universal Networking Services is proud to be the North America Authorized Agent for Datapod™ .  Our partnership with Datapod™ allows us to deliver a unique alternative to the traditional bricks and mortar data center installation. We can provide the data center community an alternative solution that maximizes their investment and increases the reliability and availability of their mission-critical facility.  Datapod is an unique, modular data center system that incorporates innovative design and cutting edge mechanical and electrical engineering. Datapod has extended the concept of modular data center design to include critical site infrastructure such as modular generators, chillers, and deployment services thereby providing a complete infrastructure solution for data centers. By enabling data center users to deploy when they like, where they like and for how long they like, the Datapod system offers performance superior to that of  a “bricks and mortar” data center facility, deploys faster and at a more cost-effective price point.

Please feel free to email us at info@datapodnorthamerica.com or contact us to learn more.

What’s Inside The Datapod System

Posted by on November 26, 2012  |  No Comments

The Datapod System utilizes Schneider Electric’s best in class power and cooling products

 

The Datapod System utilizes Schneider Electric’s Best in Class Power and Cooling Products. The APC Infrastructure Suite of power and cooling products are recognized as the World’s Leader for reliability and performance.

Power:  The intelligence of the Datapod System is that each component is scalable and modular. Beginning with the Award-Winning APC Symmetra Line of Uninterruptible Power Supply Unit (UPS). These units start at 40kW and can scale up to 2MW.

Cooling: Free-Air, Air/Water Economizers, In-Row, Hot-Aisle Containment, Cold-Aisle Containment options Cooling up to 33kW per rack possible. Datapod enables end users to save up to 40% savings in cooling costs.

Racks:  Up to 50U available. Network or Standard. The Datapod System can incorporate 20‘ or 40‘ Intermodal Compliant ISO Containers. The insulated, anti-static design provides the optimal IT environment.

Pod Management: The Datapod System is completely managed by a suite of software that allows the user to manage, control and trouble shoot potential problems remotely and via smart phone or tablet computer.  The IT assets, fire control systems, electrical and cooling systems are all monitored via standard IP networks.

Universal Networking Services is proud to be the North America Authorized Agent for Datapod™ .  Our partnership with Datapod™ allows us to deliver a unique alternative to the traditional bricks and mortar data center installation. We can provide the data center community an alternative solution that maximizes their investment and increases the reliability and availability of their mission-critical facility.  Datapod is an unique, modular data center system that incorporates innovative design and cutting edge mechanical and electrical engineering. Datapod has extended the concept of modular data center design to include critical site infrastructure such as modular generators, chillers, and deployment services thereby providing a complete infrastructure solution for data centers. By enabling data center users to deploy when they like, where they like and for how long they like, the Datapod system offers performance superior to that of  a “bricks and mortar” data center facility, deploys faster and at a more cost-effective price point.

Please feel free to email us at info@datapodnorthamerica.com or contact us to learn more.

Datapod-Key Facts

Posted by on October 27, 2012  |  No Comments

Video showcases Datapod’s rapid remote deployment capability for a truly modular and expandable data center solution.

WHAT IS DATAPOD?

  • The Datapod System is a unique solution to the needs and problems facing data center facilities in every situation.
  • The Datapod System has extended the concept of modular data center design to the entire site infrastructure space.
  • The Datapod System meets the challenges of a sector in which growth is inevitable but the pace of growth is uncertain.
  • The Datapod System is scaleable, modular, upgradeable.
  • The Datapod System takes the idea of modular data centers to unrivaled levels of security, stability and flexibility.
  • The Datapod System can be configured as anything from a single data processing module operating with available services to a fully standalone data center facility.
  • The Datapod System can be installed in any location, indoors or out, and in any conditions subject only to area available for deployment.
  • The Datapod System delivers unrivaled set-up and operational cost savings and environmental advantages.
  • The Datapod System is assembled from factory-made, standardized modules with patent protection on a number of features.
  • The Datapod System is configured to exact client specifications at the point of manufacture, fully tested prior to shipping, and re-assembled at the client’s site.
  • The Datapod System incorporates Schneider Electric’s world’s best in class technology.
  • The Datapod System is typically configured, tested and commissioned within three months of order.

FIT FOR PURPOSE-THE ENGINEERING SOLUTION

  • FACTORY/SITE ACCEPTANCE TESTING: The Datapod System offers commissioning engineers the opportunity of full Factory Acceptance Testing where, in a “test drive” situation, final adjustments can be made to configuration prior to shipment to the client’s site.  Upon delivery, Site Acceptance Testing confirms compliance with specification prior to hand over.
  • CAPACITY: The Datapod System is the complete turnkey solution to the problem of over-specifiying or under-estimating data processing needs-the modular components can be scaled and configured to meet present or anticipated requirements and the system can be easily expanded when further capacity is required.
  • POWER SUPPLY: The Datapod System’s entry-level module (the Projectpod) can be connected to existing services or configured with a Utilitypod which provides a back-up power supply through a diesel generator.
  • COOLING: The Datapod System’s data hall modules have a preinstalled Hot Aisle Containment System by Schneider Electric offering the most effective and energy efficient means of maintaining optimum operational  conditions within the data hall.
  • INTEGRITY: The Datapod System has been engineered to function in any climate, in any situation.  Compliant to MIL-STD-188-124B with full protection against lighting strikes, static electricity build-up, dust intrusion and other threats; outer shell construction is from recycled steel, the inner shells are fabricated from stainless steel which is thermally and electricity insulated from the over shells.
  • VERSATILITY: The Datapod System comprises a number of modules enabling a wide variety of configurations from standalone Projectpod to integration into a full data processing capability with Starterpod, Expanderpod, Endpod, Utilitypod; the configuration can be expanded without interruption to functionality.
  • SAFETY: The Datapod System has safety designed into every aspect of the modules, from seamless flooring to eliminate trip hazards to fire detection and alarm systems.

CAPITAL EFFICIENCY-THE CFO’S SOLUTION:

  • SCALEABILITY: The Datapod System offers the great advantage of being flexible, it can be specified to meet present or immediately projected needs limiting expenditure to useful capacity and, if required, readily expanded without down time.
  • FLEXIBILITY: The Datapod System works wherever you need it; the standalone capability and its great durability recommend it for harsh and remote locations but it is equally at home installed within a corporate headquarters or, where an existing building is at full capacity, placed adjacent in the grounds, warehouse or in the car park.
  • CAPITAL COSTS: The Datapod System is the most capital efficient solution to data processing center requirements irrespective of size and operational environment; the speed of deployment from final specification, the ability to customize to meet exact operational requirements, the fully detailed contract price all contribute to the Datapod System’s cost advantage over alternative solutions.
  • BUILD COSTS: The Datapod System is based on the configuration of standardized modules which are easily and rapidly deployed reducing all aspects of build costs including time, labor and energy costs associated with traditional builds.
  • OPERATING COSTS: The Datapod System scales to precise data processing requirements, ensuring that operation costs reflect operational needs; the additional technology and design features of the System also contribute to cost effective operation through the cooling architecture, use of insulation and incorporation of Schneider Electrics’ class-leading technology.
  • CONSTRUCTION RISKS: The Datapod System is fully assembled and Factory Acceptance Tested prior to shipment to and deployment on the user’s site; while configuration reflects individual user needs the component modules are of standard design and construction meaning they are fully tested and they benefit form Datapod’s commitment to continuous improvement through experience and client feedback.
OPTIMUM EFFICIENCY-THE GREEN SOLUTION:
  • POWER CONSUMPTION: The Datapod System has been innovatively engineered for optimum energy efficiency by right sizing electrical and mechanical components the System posts figures that indicate electricity consumption levels fifty percent below those of equivalent data centers.
  • EMISSIONS: The Datapod System’s energy efficient construction means reduced emissions and, importantly in every case and in some locations critically, the deployment of the modular Datapod System means enormously reduced emissions impact at the construction stage over traditional build solutions.
  • COOLING SYSTEM: The Datapod System uses specialized chillers with several environmental benefits; the use of Schneider Electric’s class leading Hot Aisle Containment system can be combined with a water side economizer resulting in economies in power use, the System’s Utility pod in addition employs dry condenser units meaning that a standard Datapod System consumes Zero water.
  • RECYCLED/RECYCLABLE MATERIALS: The Datapod System uses recycled steel in its outer shell construction and other recycled or recyclable materials where ever possible throughout design and build.

BRINGING IT ALL TOGETHER (FACTS AND FIGURES):

PROJECTPOD: Enable onsite computing and storage where and when you need it. Standalone fully self-contained, transportable for rapid deployment.  Includes fully self-contained air-cooled DX versions, provides data center capability anywhere at short lead time and for as long as required.  Low, medium, and high-density versions, utilizes condenser water or chilled water.

STARTERPOD: The starting point and first pod of your Datapod system, it contains the power, cooling and data input connections. Incorporates InRow Cooling and IT Enclosures, the expandable APC modular Symmetra UPS gives you the starting point for growth as required.  Built-In InRow cooling and NetShelter enclosures ensure your data center is up and running with no further upfront investment.  When 2 Starterpods are used, a 2(N+1) system is created providing the highest levels of availability and redundancy.

EXPANDERPOD: Grow your Datapod system by adding the pre-built Expanderpod.  It easily connects onto other ‘pods’ to expand your system.  Removable side-walls allow the creation of a limitless best-of-breed computer room, the system can be expanded as required by your IT needs, aligning your budgets with your requirements in real-time.  With pre-deployed power, inrow cooling and enclosures, you can build your data center on-demand.

ENDPOD: End your Datapod system with the Endpod.  The data center Hot Aisle can be accessed from either end.  The Endpod add more power, cooling and IT enclosures, and gives users the necessary space, access and the end door to the APC Hot-Aisle Containment System.  The Endpod is optional-some Datapod systems will continue to grow over time and not deploy the Endpod.  The solid, non-removable end wall ensures the highest levels of resistance to the elements.

CONNECTION NODE: The Connection Node makes the setup of the Datapod system a breeze.  This pre-deployable skid-mounted utility connection system for mains and generator power, cooling and data is designed to simplify the deployment, modification and removal of the Datapod System. Delivered to site in advance of the Starterpod, the Connection Node connects to the site mains power supply and optional diesel generator backup power supply. Data communication links and chilled water or condenser water from the site supply or Utilitypod are connected via the Connection Node.  Positioned 1 to 2 meters from the designated location, our APC engineers simply connect these 3 utilities from the Connection Node to the Datapod using pre-assembled link systems for rapid deployment.

ENTRYPOD: The Entrypod creates a secure and weatherproof system that doubles as office or storage space for data center staff.  The 10′ Entrypod cubicle, fitted with proximity card magnetic lock systems keeps the elements out of your data center.  It connects on both ends and enables multiple Datapods to be connected together via the Entrypod.

UTILITYPOD: The Utilitypod provides the backup power and cooling for your Datapod to operate anytime, anyplace.  Easily transportable, fully-rated diesel generator and fuel tans for backup power supply, and multiple redundant chillers to support the highest density Datapod system.  Housed within an identical 20′ enclosure and the capacity to support the highest density Datapod systems, the diesel generator provides 280kW of useable output power.  Cooling is supplied by 3X80kW chillers, giving redundancy to the critical cooling system.  The Utilitypod can be pre-deployed with the Connection Node or added later, as required. Alternatively the Utilitypod is available as a standalone system for use in non-Datapod projects.

Universal Networking Services is proud to be the North America Authorized Agent for Datapod™ . Our partnership with Datapod™ allows us to deliver a unique alternative to the traditional bricks and mortar data center installation. We can provide the data center community an alternative solution that maximizes their investment and increases the reliability and availability of their mission-critical facility.  Datapod is an unique, modular data center system that incorporates innovative design and cutting edge mechanical and electrical engineering. Datapod has extended the concept of modular data center design to include critical site infrastructure such as modular generators, chillers, and deployment services thereby providing a complete infrastructure solution for data centers. By enabling data center users to deploy when they like, where they like and for how long they like, the Datapod system offers performance superior to that of  a “bricks and mortar” data center facility, deploys faster and at a more cost-effective price point.

Please feel free to email us at info@datapodnorthamerica.com or contact us to learn more.

Accounting and Tax Benefits of Modular, Portable Data Center Infrastructure

Posted by on May 11, 2012  |  No Comments

White Paper 115

This white paper is provided to highlight the opportunities and benefits of involving a finance or tax professional who is knowledgeable in the acquisition and deployment of data center physical infrastructure (DCPI) assets. Applying the accounting options available within the framework of what is known as Generally Accepted Accounting Principles (GAAP), DCPI assets may be better aligned with the goals and objectives of a particular business, institution, or organization. This document is not intended to provide or offer advice on tax planning, as only a qualified or certified financial professionals may actually provide tax advice.

Among the difficulties faced by owners of DCPI assets, is the absence of perceptive financial treatment of the individual portions of mission critical systems. Frequently, the UPS, power distribution unit (PDU), and branch circuit panels installed in the construction of a building (or as a major “improvement project“) will be booked as a “building improvement” and depreciated along with the concrete, steel, boilers and pipes of the building. The “building” will likely have a long depreciable life, which may be upwards of 30+ years. However, DCPI equipment typically has a relatively short useful life, even though the UPS, PDU, and related branch circuits may remain on the books long after they are declared obsolete. For many companies, improper booking of high technology DCPI such as UPS systems and PDUs routinely causes substantial problems in the form of overstated “real property” asset value, and the obligation to take a “write-down” in the year that the UPS and related parts are “retired”. A glossary is provided in the appendix of this paper to define various terms used throughout.

Recent improvements in the design and manufacture of DCPI equipment, particularly UPS systems, PDUs, and (to some extent) air conditioning, has opened up the opportunity to treat DCPI as “business equipment”, rather than a part of the building in which the equipment is installed. This achievement is the direct result of scalable, modular, and fully manufactured systems requiring little or no field wiring other than the connection of the input power (which may be accomplished through “cord and plug connected” means).

This improved DCPI works well in a dynamic business climate where technology changes frequently and economic cycles and leaseholds may be substantially shorter than real estate investment periods. The integration of this DCPI into a corporation, institution, or organization’s economic model is not difficult, because nearly all corporations, institution, or organizations have experience with the management of business equipment, including computers, copy machines, production machinery, and company owned vehicles.

“Accounting and Tax Benefits of Modular, Portable Data Center Infrastructure” Full White Paper (Click Here To Download)

Executive Summary:

Well-informed accounting treatment of data center physical infrastructure (DCPI) assets provides significant opportunities to contribute to improving the financial performance of a business, institution, or organization. Design and manufacturing improvements in modular, scalable UPS systems, power distribution units (PDUs), and computer room air conditioners have not only created technological benefits, but provide entirely new DCPI asset management opportunities with direct and measurable financial benefits.

Contents:

  • “Traditional” vs. factory-built solutions
  • Understanding property taxes and related government fees
  • Financial planning for DCPI assets
  • Implementation of an asset management strategy for DCPI (Steps 1-7)
    • Step 7:  Cost segregation

Cost segregation:

By applying different depreciation rates to different components of a building, a business, institution, or organization may lower its corporate income taxes and thereby make available more cash flow. Cost segregation, as practiced by financial professionals with experience in corporate income tax accounting, is largely an exercise in recognizing and separately accounting for the costs of 5, 7, 10, 15, and 20 year property from the 30 or 39 year property classifications. The property in the each of the classifications from 5 to 20 years, in addition to being properly separated from the 30 or 39 year categories, once properly identified, are eligible for accelerated depreciation. Accelerated depreciation allows a business, institution, or organization paying corporate income tax to further increase deductions during the early life of the equipment.

Businesses, institutions, and organizations that own high technology assets can benefit the most from employing cost segregation methodology, so long as each asset can pass the so called function and use test and the inherent permanency test. The function and use test is intended to determine whether an asset serves any purpose in the operation of the building, as carefully differentiated from the business conducted within the building. If the asset is determined not to serve any purpose in the operation of the building, it is then subject to the inherent permanency test, where ease of removal and the complexity of the removal process are evaluated. Modular, scaleable, factory built DCPI performing the work or mission of a business, institution, or organization, routinely pass both tests easily.

Conclusion:

The impact of tax and tax related asset management strategies on the total cost of ownership of DCPI can be significant. These savings are entirely separate to gains in energy efficiency and the cost of maintenance, compared to an old, oversized legacy or traditional UPS system, with high electrical energy consumption, escalating repair, deferred maintenance, and real estate costs. Personal property, real estate, and corporate income tax savings, and tax related savings (such as the tax component of rent) can produce direct financial benefits, in excess of 20% of the installed cost of a properly sized, installed, and “booked”, factory-built UPS and PDU solution.

The key to successful implementation of a tax and tax related asset management strategy is involving a financial professional along with the IT professionals, and facility managers involved in the deployment of DCPI, and:

  • Consider treating all factory-built DCPI solutions as business equipment
  • Consider declaring factory built DCPI as personal rather than real property
  • Create realistic depreciation schedules
  • Avoid life cycle errors creating stranded asset requiring a “write-down” against earnings
  • Reassess permit and inspection requirements for factory built DCPI
  • Plan for asset portability and asset reassignment; and incorporate tax related savings including
  • Plan for reduction in construction costs for a dedicated UPS room
  • Lower monthly or annual rents or allocation cost associated with dedicated UPS rooms, hallways, and common areas required to access the dedicated UPS rooms

Modular, scalable UPS systems, PDUs, and computer room air conditioners have not only created technological benefits, but provide entirely new DCPI tax and asset management opportunities with direct and measurable financial benefits. While this white paper is intended to highlight these opportunities, its primary message is the benefit of involving a tax professional in any team planning improvement to a data center or network room DCPI. The results will be dramatic.

White Paper Written By:

Barry Rimler

Organizations that own high technology assets can benefit the most from exercising cost segregation strategies, so long as each asset can pass the function and use test and the inherent permanency test.  Modular, scaleable factory built Data Center Physical Infrastructure (DCPI) performing the mission of a business routinely pass both tests with ease.

Tax and tax related asset management strategies create a significant impact on the total cost of ownership of DCPI.  These savings are entirely separate to gains in energy efficiency.  Successful implementation of cost segregation strategies involves a financial professional along with the IT professionals and facility managers in the deployment of DCPI.

Universal Networking Services works closely with a dedicated cost segregation team that includes engineers and tax experts that have performed thousands of tax projects resulting in hundreds of millions of dollars in benefits.   The initial assessment to determine qualification is free.  If you think you may qualify for cost segregation and want to increase your cash flow please feel free to contact us to learn more.

TCO Analysis of a Traditional Data Center vs. a Scalable, Containerized Data Center

Posted by on April 29, 2012  |  No Comments

White Paper 164

Power and cooling systems available now are more modular, more standardized, and more efficient than those installed in the majority of data centers today. Whether upgrading an existing data center or building a new one, data center managers will minimize both capital and operating expenses by specifying physical infrastructure with the following attributes:

  • Standardized, pre-assembled, and integrated components
  • Modular infrastructure than can scale as the load increases over time
  • Efficient power and cooling components
  • Cooling design with integrated economizer mode
  • Pre-programmed controls

White Paper 163,“Containerized Power and Cooling Modules for Data Centers”, describes how standardized, pre-assembled, and integrated modules (sometimes referred to as containers) save deployment time and upfront cost compared to the same electrical and mechanical infrastructure implemented in a “stick built” manner with custom engineering and considerable onsite work.

However, significant additional savings can be achieved. The modular nature of facility modules enables scaling and rightsizing to actual data center loads. This, in combination with current power and cooling distribution technologies, results in a TCO savings of nearly 30% over a traditional data center (27.2% capital cost and 31.6% operating cost).

“TCO Analysis of a Traditional Data Center vs. a Scalable, Containerized Data Center” Full White Paper (Download It Here)

Executive Summary:

Standardized, scalable, pre-assembled, and integrated data center facility power and cooling modules provide a “total cost of ownership” (TCO) savings of 30% compared to traditional, built-out data center power and cooling infrastructure. Avoiding overbuilt capacity and scaling the design over time contributes to a significant percentage of the overall savings. This white paper provides a quantitative TCO analysis of the two architectures, and illustrates the key drivers of both the capex and opex savings of the improved architecture.

Contents:

  • Cost Comparison
  • Assumptions

Conclusion:

Traditional designs almost always intentionally incorporate excess capacity upfront because subsequent expansion of power and cooling capacity is extremely difficult and costly in a production data center. This often has the effect of people being overly conservative in capacity planning which then results in higher upfront capital costs and a chronically inefficient data center. The proper deployment of facility modules, on the other hand, eliminate this wasteful oversizing tendency, because its standardized, modular architecture makes adding or reducing capacity to meet real-world, dynamic demand much easier. This, in conjunction with efficient, integrated power and cooling technologies results in TCO savings of 30% compared to a typical oversized data center operating today.

White Paper #164 Written By:

Wendy Torell

Universal Networking Services is proud to partner with Datapod™ to deliver an unique alternative to the traditional bricks and mortar data center installation. With Datapod we can provide the data center community an alternative solution that maximizes their investment and increases the reliability and availability of their mission-critical facility.  Datapod is an unique, modular data center system that incorporates innovative design and cutting edge mechanical and electrical engineering. It has extended the concept of containerized data centers to include critical site infrastructure such as modular generators, chillers, and deployment services thereby providing a complete infrastructure solution for data centers. By enabling data center users to deploy when they like, where they like and for how long they like, the Datapod system offers performance superior to that of  a “bricks and mortar” data center facility, deploys faster and at a more cost-effective price point.

Please feel free to contact Waite Ave at w.ave@apcdistributors.com or click on contact us to learn more.

“What Is Datapod?” Series-Part I

Posted by on April 26, 2012  |  1 Comment

DATAPOD™ CONTAINERIZED ON-DEMAND DATA CENTER

Click Here To Download Brochure

The Datapod system means you no longer need to run the risk of construction project cost blowouts, delays and compromised outcomes. Datapod can deliver a quality turn-key solution faster and at less cost compared to legacy data center construction projects.

A key dilemma facing legacy data center construction projects is whether or not to build a large data center to cater for possible growth in capacity requirements over the life of the facility or build a smaller data center in the hope that IT requirements do not exceed built capacity before end of life. The chances of acurately predicting your future IT requirement are low and the associated capital risks are high. In contrast, the modular Datapod system allows you to deploy only what you need when you need it, where you need it. Right-sizing your data center site infrastructure is not only capital efficient it is also operationally efficient.

Deploying the right amount of floor space as you need it means cooling and humidification resources are not wasted on conditioning surplus space. Incrementally deploying power and cooling systems to match the actual power and cooling requirements allows these system to run within their most energy efficient mode of operation. Incrementally investing in capacity only when you need it also gives you the best chance of benefiting from future technological improvements. Datapod’s committment to research and development in the area of energy efficient site infrastructure means you benefit from ongoing product enhancements and improved environmental efficiencies over time.

A productised approach to data center site infrastructure allows you to adopt a procurement model that matches your IT operations. Datapod offers an attractive leasing option that means you can now deploy your capital to more productive endeavors rather than having it tied up in legacy data centre projects that have increasingly rapid obsolescent.

Datapod Press Launch

Watch a Datapod Assembly

Datapod Explained

Datapod Interior Virtual Tour

Universal Networking Services is proud to partner with Datapod™ to deliver an unique alternative to the traditional bricks and mortar data center installation. With Datapod we can provide the data center community an alternative solution that maximizes their investment and increases the reliability and availability of their mission-critical facility.  Datapod is an unique, modular data center system that incorporates innovative design and cutting edge mechanical and electrical engineering. It has extended the concept of containerized data centers to include critical site infrastructure such as modular generators, chillers, and deployment services thereby providing a complete infrastructure solution for data centers. By enabling data center users to deploy when they like, where they like and for how long they like, the Datapod system offers performance superior to that of  a “bricks and mortar” data center facility, deploys faster and at a more cost-effective price point.

Please feel free to contact Waite Ave at w.ave@apcdistributors.com or contact us to learn more.

Avoiding Costs from Oversizing Data Center and Network Room Infrastructure

Posted by on April 15, 2012  |  No Comments

White Paper 37

This paper will show that the single largest avoidable cost associated with typical data center and network room infrastructure is oversizing. The utilization of the physical and power infrastructure in a data center or network room is typically around 50-60%. The unused capacity of data centers and network rooms is an avoidable capital cost, and it also represents avoidable operating costs, including maintenance and energy.

This paper is constructed in three parts. First, the facts and statistics related to oversizing are described. Next, the reasons why this occurs are discussed. Finally, an architecture and method for avoiding these costs is described.

“Avoiding Costs from Oversizing Data Center and Network Room Infrastructure” Full White Paper (Download Here)

Executive Summary:

The physical infrastructure of data centers and network rooms is typically oversized by five times the actual capacity at start-up and more than one and a half times the ultimate actual capacity. Oversizing statistics from actual customer installations are presented. The TCO costs associated with oversizing are quantified to be in excess of 30%. The fundamental reasons why oversizing occurs are discussed and an architecture and method for avoiding it is described.

Contents:

  • Facts and statistics related to oversizing
  • Why does oversizing occur?
  • Fundamentals reasons for oversizing
  • Architecture and method to avoid oversizing

Conclusion:

Data centers and network rooms are routinely oversized to more than 1 1/2 times their ultimate actual capacity. Oversizing drives excessive capital, maintenance, and energy expenses, on the order of 30%. This is a substantial fraction of the overall lifecycle cost. Most of this excess cost can be recovered by implementing a method and architecture that can adapt to changing requirements in a cost-effective manner while at the same time providing high availability.

White Paper #37 Written By:

Neil Rasmussen

Find out how Universal Networking Services brings a comprehensive solution from the utility pole to the server and assists with navigating the complex waters of most size and scope of projects. Whether you are upgrading, retrofitting or developing a new design-build, UNS and its partners generate efficient, scalable, reliable and manageable critical infrastructure solutions to your organization. Our holistic, common sense approach lowers our clients Total Cost of Ownership (TCO) and maximizes efficiencies offered by the advancements in critical power and cooling infrastructure.

Please feel free to contact us to learn more.

Universal Networking Services Institute for Data Center Professionals

Posted by on April 6, 2012  |  No Comments

Data center education that will lay the critical foundation to run an efficient data center.

Data center efficiency should be a topic of significant importance to all data center operators. At Universal Networking Services (UNS), our philosophy is simple: knowledge is key to data center efficiency!  UNS Institute for Data Center Professionals offers the data center community priceless educational opportunities through numerous gateways:

Educational Gateways:

“Educational Series For Data Center Professionals”

“Breakfast and Learn Series For Data Center Professionals”

Universal Networking Services Blog

Data Center Critical Power and Cooling LinkedIn Group

Universal Networking Services Twitter

About UNS “Educational Series For Data Center Professionals”:

The “Educational Series For Data Center Professionals” is a customized training series conducted at YOUR facility that provides the education that will lay the critical foundation for your organization to run an efficient data center.  UNS works diligently with you and your staff to customize a curriculum specific to your facilities requirements that educate and showcase the latest in technologies and best practices for data center power, cooling, monitoring, security and management.  Choose either topics from current course curriculum (see course curriculum below) or customize your training.   At UNS, we believe education is key to controlling your data center costs.  With that in mind, we couple your customized training session with our signature Critical Facility Energy Profile (CFEP) assessment.  To highlight, our CFEP service provides an on-site, non-invasive, risk free analysis of your current Network Critical Physical Infrastructure (NCPI) to determine the baseline efficiency of your data center.   On the first day, we will perform a site/data center assessment (CFEP), during which, items that are affecting efficiency and reliability are compiled.  On the second day, we return to the facility to perform a customized education/training session on today’s best strategies for power, cooling, monitoring security and management using examples from YOUR facility.  The education provided will drive your organization’s total-cost-of-ownership (TCO) as low as possible.   UNS is committed to understanding our clients challenges and provide the tools needed to operate their businesses with reliability and maximum efficiency. Contact us today to learn more about this unique educational opportunity.

Current “Educational Series For Data Center Professionals” Course Curriculum:

“POWER FUNDAMENTALS”-If you’ve ever asked yourself…”What’s the difference between kVA and kW?  AC and DC, isn’t that a band? Single-phase or three-phase?…then this is the course for you! In this course, students learn the fundamentals of AC and DC power, from generation to application.

“POWER DISTRIBUTION”-“With great power comes great responsibility.”  One can have all the power in the world but efficiently distributing that power to your critical equipment is the trick that makes the difference between business as usual or lights out!  In this course, students learn the fundamentals and application of efficient power delivered in terms of both off-site and on-site power generation.

“EFFICIENT POWER MANAGEMENT-OPTIMIZING TCO”- “Generator? Check. UPS? Check. Doors secured? Check. Red lights? Check…uh-oh! What do we do now? Who will we call?  Is this covered under a service agreement?” Managing your assets is one thing but doing so in a manner that lowers your TCO and allows you to sleep better at night takes some strategy.  Increasing availability and reliability while continuously decreasing costs means you’ll have to know when to break from the crowd and try less conventional methods.  This course is designed for the professional that has a solid understanding of both “Power Fundamentals” and “Power Distribution” and is ready to develop a strategy to manage their time, manpower and assets with maximum efficiency.

“CRITICAL COOLING 101-FUNDAMENTALS OF AIR CONDITIONING”-This course explains the fundamentals of air conditioning systems and how they can be leveraged in a data center to your advantage.  Topics include:  The Properties of Heat Transfer, The Ideal Gas Law, The Refrigeration Cycle, Condensation Control, and Comfort vs. Precision Cooling.  With a solid understanding of air conditioning principles, this course enables students to make knowledgeable decision on what air conditioning solutions are right for their data center-solutions based on fact, rather than sales and marketing strategy.

“EFFICIENT COOLING-OPTIMIZING COOLING STRATEGIES AND ARCHITECTURE”-Today’s servers generate significantly more heat, and in more concentrated, confined space than they did 20 years ago. So, why are data centers still using the same cooling strategies of yesteryear? This course takes a hard look at data center cooling architectures from many angles: efficiency, reliability, TCO, feasibility and availability, enabling students to make the best choices in cooling their critical equipment.  “Understanding the difference between comfort cooling and critical cooling; understanding the different types of cooling architectures and their deployment; and developing a method of choosing one cooling strategy over another” are all topics discussed in this course offering.

About UNS “Breakfast and Learn Series for Data Center Professionals”:

The “Breakfast and Learn Educational Series for Data Center Professionals” offers the data center community multiple opportunities to learn from their peers, share experiences, and expand industry knowledge.  Our educational sessions are conducted throughout the United States quarterly and will be advertised via our Data Center Critical Power and Cooling LinkedIn Group and/or follow us on Twitter.  Our “Breakfast and Learn Series” can also be customized and conducted at your own facility.  For more information on our “Breakfast and Learn Series” please contact us.

Current “Breakfast and Learn” Discussions:

“RIGHT-SIZING VERSUS OVER-SIZING: EFFICIENCY IN THE DATA CENTER”- Forecasting and measuring the total cost of ownership (TCO) for Data Center Physical Infrastructure (DCPI) is essential for return-on-investment (ROI) analysis.  Oversizing is the main contributor to excess TCO.  Oversizing creates inefficiencies in the data center including excess capital cost, operating cost, and specifically energy cost.  The average data center operator can achieve the highest return investment in relation to DCPI through right-sizing.  Right-sizing the DCPI system to the load is the key to optimizing TCO and has the most impact on DCPI electrical consumption.  Right-sizing can potentially eliminate up to 50% of the electrical bill in real-world scenarios.  For example, potential electricity cost savings for a typical 1 MW data center has been shown to be $2,000,000 to $4,000,000 over a typical 10-year life to the facility.  Data center efficiency is key to controlling your energy costs and should be a topic of significant importance to all data center operators.  This discussion is available through our “Breakfast and Learn Educational Series For Data Center Professionals”.

“IS PERIMETER COOLING DEAD?”-Traditional data center “room” cooling is unable to accommodate the latest generation of high and variable density IT equipment resulting in cooling systems that are inefficient, unpredictable, and low in power density.  To address these problems, row-oriented and rack-oriented cooling architectures have been developed.  Our presentation, “Is Perimeter Cooling Dead” examines and contrasts the 3 basic cooling approaches:  room, row, and rack architectures.  Each approach has an appropriate application but row-orientated cooling is emerging as the solution of choice for most next generation data centers.  Next generation data centers demand the flexibility, predicability, scalability, reduced electrical power consumption, reduced TCO and optimum availability that row and rack-oriented cooling architectures can provide.  Additionally, the factors that gave rise to the establishment and use of the raised floor is no longer justified or desirable.  To learn more about this topic, “Is Perimeter Cooling Dead” is available for your organization through our unique “Breakfast and Learn” Educational Series For Data Center Professionals.

About Universal Networking Services Blog “Don’s Corner”:

Data center industry blog that discusses the most relevant topics challenging the data center industry today.  Don Melchert, Critical Facility Specialist, shares in “Don’s Corner” his extensive knowledge and experience from the mission critical arena.  “Don’s Corner” highlights real world experiences to provide you the tools to maximize your efficiency while lowering your operating costs.

About Universal Networking Services LinkedIn “Data Center Critical Power and Cooling Group”:

Join UNS and industry peers on an open forum to discuss the following topics relating to data center “best practices”.  Key areas are:

– Power

– Cooling

– Racks- Security

– Management

– Fire Suppression

– Personnel

Submit your questions or comments on issues that affect your data center and have them answered by our Critical Facility Specialist.  We provide valuable insight to common problems that often plague modern data centers. Join the discussion at Data Center Critical Power and Cooling LinkedIn Group.

About Universal Networking Services Twitter:

Follow us on Twitter as we tweet/share industry related news, event postings, and company updates.

APC Data Center University

Data Center University™ (DCU) offers industry-leading education for IT professionals‚ facilities managers‚ engineers‚ designers‚ consultants‚ and anyone involved in the critical decisions and infrastructure planning of data centers worldwide. The changing nature of data centers‚ and the technology that impacts them‚ makes it even more critical that employees remain up to date on the current theories and best practices for issues around topics of power‚ cooling‚ management‚ security‚ and planning.

DCU provides a full curriculum of courses that educate and deliver up-to-the-minute information when and where you need it. Our online program is intended to be manageable and attainable‚ and with our Certification exam‚ you can quantify your learning and experience as a true data center professional!

Energy University by Schneider Electric

Schneider Electric, the global specialist in Energy Management has launched an e-learning website Energy University to provide the latest information and professional training on Energy Efficiency concepts and best practice! All in ONE Place – All in ONE site!

In addition to learning new energy saving ideas that directly contribute to the overall well-being of the earth; you will also become an even more valuable employee by contributing to the bottom line for your company. Learn something new today and apply the knowledge tomorrow. Become an Energy Efficiency Champion! Read more…

What Is A Business-wise, Future-driven™ Data Center?

Posted by on March 11, 2012  |  No Comments

UNS is critical facilities. Our vision incorporates a “Single Solution Provider” in the data center market that specifically targets the small to medium enterprises.

UNS brings significant value to the customer by viewing the IT and facility as a single entity. This approach allows us to bring highly reliable, cost effective solutions to your organization. The UNS approach reduces acquisition costs, enables faster deployment and brings the best of each component of the data center and makes it available to the customer at competetive prices. Our partnership with Schneider Electric, the global specialist in energy management, brings together the world’s leading manufacturers of critical components to ensure that your organization gets a reliable, cost-effective, right-sized solution.  A solution that is Business-wise, Future-driven™.

Access Schneider Electric’s 10 Ways for Your Data Center to be Business-wise, Future-driven™ to see how Schneider Electric data center physical infrastructure enables companies to adapt data centers at the speed of business to meet ever-changing business needs—now and in the future.

An excellent example of a Business-wise, Future-driven™ data center is Mercy Health.  Mercy Health is a cutting-edge health care organization that has partnered with Schneider Electric for all their data center needs over the past six years. Schneider Electric’s Business-wise, Future-driven™ data center has allowed Mercy to shift their business model from a hospital supported by a data center to a data center system supporting hospitals.  Please enjoy Mercy Health: Beyond the Digital Hospital” for more information.

To learn more about how Universal Networking Services can help you achieve a Business-wise, Future-driven™ data center please visit www.criticalpowerandcooling.com or contact us.


Don’s Corner: “Is Perimeter Cooling Dead?”

Posted by on March 6, 2012  |  No Comments

Don Melchert, Critical Facility Specialist

“IS PERIMETER COOLING DEAD?”

Traditional data center “room” cooling is unable to accommodate the latest generation of high and variable density IT equipment resulting in cooling systems that are inefficient, unpredictable, and low in power density.  To address these problems row-oriented and rack-oriented cooling architectures have been developed.  Our presentation, “Is Perimeter Cooling Dead” examines and contrasts the 3 basic cooling approaches: room, row, and rack architectures. Each approach has an appropriate application but row-orientated cooling is emerging as the solution of choice for most next generation data centers. Next generation data centers demand the flexibility, predicability, scalability, reduced electrical power consumption, reduced TCO, and optimum availability that row and rack-oriented cooling architectures can provide. Additionally, the factors that gave rise to the establishment and use of the raised floor in the data center environment are presented.  For many applications the use of the raised floor is no longer justified or desirable. To learn more about this topic, “Is Perimeter Cooling Dead” is available for your organization via our unique “Breakfast and Learn” Educational Series For Data Center Professionals.  This series provides the education that will lay the critical found for your organization to run an efficient data center.  Please feel free to contact me for further information at d.melchert@apcdistributors.com or 918-760-8236.

The Advantages of Row and Rack-Oriented Cooling Architectures for Data Centers (White Paper #30) Overview:

Executive Summary:

Latest generation high density and variable density IT equipment create conditions that traditional data center room cooling was never intended to address, resulting in cooling systems that are inefficient, unpredictable, and low in power density. Row-oriented and rack-oriented cooling architectures have been developed to address these problems. This paper contrasts room, row, and rack architectures and shows why row- oriented cooling will emerge as the preferred solution for most next generation data centers.

Highlights:

  • Discuss the following cooling approaches:  room, row and rack-based cooling architectures.
  • Benefit comparison of cooling architectures:  challenges in agility, availability, lifecycle costs, serviceability, and manageability
  • Special issues:  capacity utilization, humidification, electrical efficiency, water near IT equipment, location and redundancy.
  • Elements of the raised floor and problems associated with using a raised floor.
  • Hurdles to eliminating the raised floor
  • Designing without a raised floor.

Conclusion:

The conventional legacy approach to data center cooling using room-oriented architecture has technical and practical limitations in next generation data centers. The need of next generation data centers to adapt to changing requirements, to reliably support high and variable power density, and to reduce electrical power consumption and other operating costs have directly led to the development of row and rack-oriented cooling architectures. These two architectures are more successful at addressing these needs, particularly at operating densities of 3 kW per rack or greater. The legacy room-oriented approach has served the industry well, and remains an effective and practical alternative for lower density installations and those applications where IT technology changes are minimal.

Row and rack-oriented cooling architecture provides the flexibility, predictability, scalability, reduced electrical power consumption, reduced TCO, and optimum availability that next- generations data centers require. Users should expect that many new product offerings from suppliers will utilize these approaches.

It is expected that many data centers will utilize a mixture of the three cooling architectures. Rack-oriented cooling will find application in situations where extreme densities, high granularity of deployment, or unstructured layout are the key drivers. Room-oriented cooling will remain an effective approach for low density applications and applications where change is infrequent. For most users with newer high density server technologies, row-oriented cooling will provide the best balance of high predictability, high power density, and adaptability, at the best overall TCO.

References:

Avoidable Mistakes that Compromise Cooling Performance in Data Centers and Network Rooms (White Paper#49) Overview:

Executive Summary:

Avoidable mistakes that are routinely made when installing cooling systems and racks in data centers or network rooms compromise availability and increase costs. These unintentional flaws create hot-spots, decrease fault tolerance, decrease efficiency, and reduce cooling capacity. Although facilities operators are often held accountable for cooling problems, many problems are actually caused by improper deployment of IT equipment outside of their control. This paper examines these typical mistakes, explains their principles, quantifies their impacts, and describes simple remedies.

Conclusion:

The air distribution system is a part of the data center that is not well understood, and facility operators and IT personnel often take actions involving airflow that have unintentional and adverse consequences to both availability and cost.

Flawed airflow implementation has not been a serious problem in the past, due to low power density in the data center. However, recent increases in power density are beginning to test the capacity of cooling systems and give rise to hot-spots and unexpected limitations of cooling capacity

Decisions such as facing all racks in the same direction are often made for cosmetic reasons to project image; but as users and customers become more educated they will conclude that people who do not implement airflow correctly are inexperienced, which is the opposite of the original intent.

Adopting a number of simple policies and providing a simple justification for them can achieve alignment between IT and Facilities staff resulting in maximum availability and optimized TCO.

References:

« Older Entries